Exercise 2

Sketch the set of points determined by the condition
(a) $\operatorname{Re}(\bar{z}-i)=2$;
(b) $|2 \bar{z}+i|=4$.

Solution

Part (a)

$$
\begin{gathered}
\operatorname{Re}(\bar{z}-i)=2 \\
\frac{\bar{z}-i+\overline{\bar{z}}-i}{2}=2 \\
\frac{\bar{z}-i+\overline{\bar{z}}-\bar{i}}{2}=2 \\
\frac{\bar{z}-i+z+i}{2}=2 \\
\frac{z+\bar{z}}{2}=2 \\
\operatorname{Re} z=2
\end{gathered}
$$

The graph is therefore a straight line.

Part (b)

$$
\begin{gathered}
|2 \bar{z}+i|=4 \\
|\overline{2 z-i}|=4 \\
|2 z-i|=4 \\
|2|\left|z-\frac{i}{2}\right|=4 \\
2\left|z-\frac{i}{2}\right|=4 \\
\left|z-\frac{i}{2}\right|=2
\end{gathered}
$$

The graph is therefore a circle centered at $(0,1 / 2)$ with radius $\sqrt{2}$.

